Journal Of Organometallic Chemistry, 164 (1979) 227–234 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

REACTIONS OF BIS(TRIPHENYLPHOSPHINE)IMINIUM PENTACARBONYLMANGANATE(-I) WITH GROUP IV HALIDES

D. Neil Duffy and Brian K. Nicholson* School of Science, University of Waikato, Hamilton, N.Z. (Received September 29th, 1978)

SUMMARY

Bis(triphenylphosphine)iminium pentacarbonylmanganate(-I) [PPNMn(CO)₅] has been shown to be a convenient alternative to NaMn(CO)₅ in the synthesis of alkyl, germyl or stannyl derivatives of Mn(CO)₅. Reactions of PPNMn(CO)₅ with halosilanes follow an anomalous route to give Mn(CO)₄Cl₂⁻ as a major manganese containing product.

INTRODUCTION

The versatile synthetic reagent $Mn(CO)_5^-$ is usually obtained in solution as the Na⁺ salt by reduction of the dimer $Mn_2(CO)_{10}$ with sodium amalgam in ether solvents [1,2]. The resulting solutions are generally used without further purification which may lead to complications arising from incomplete reduction, formation of polynuclear anionic species or incorporation of mercury-containing by-products. The solid salt NaMn(CO)₅ is not readily isolated in a pure state, which leads to difficulties when accurately known stoichiometries are required, or when $Mn(CO)_5^-$ is required in solvents other than the ethers commonly used for the reduction. Furthermore, extensive ion-pairing is known to occur in solutions of NaMn(CO)₅ [3,4] which may have a profound effect on reactivity patterns [5].

A possible way of overcoming these problems is via the ionic salt $PPNMn(CO)_{5}$ [$PPN^{+} \equiv (Ph_{3}P)_{2}N^{+}$]. Ruff [6] and others [7] have shown that the PPN^{+} cation is useful for isolating otherwise reactive anions as pure, relatively air-stable salts and this stabilising effect can apparently be

partially carried over into solution [8]. Furthermore the PPN⁺ cation is non-polarising and is unlikely to perturb the reactivity of $Mn(CO)_5$ by ion-pairing interactions [5]. Despite the attractions of this system there has apparently been only one report [9] of the use of PPNMn(CO)₅ in saltelimination reactions. To explore this potential utility we have investigated the reactions of PPNMn(CO)₅ with some Group IV halides.

RESULTS AND DISCUSSION

General Properties of PPNMn(CO)₅

Pure samples of PPNMn(CO)₅ can be readily isolated in >75% yield, based on $Mn_2(CO)_{10}$ used, following the procedure described by Ruff [6] for PPNCO(CO)₄. The resulting salt forms pale-yellow crystals that can be manipulated in air for short periods without decomposition, although visible darkening occurs after several days. Stored at -30°C under nitrogen the solid is unchanged after a year.

PPNMn(CO)₅ is very soluble in THF and CH_2Cl_2 , sparingly so in benzene and Et₂O and insoluble in saturated hydrocarbon solvents. In CH_2Cl_2 or THF solution PPNMn(CO)₅ gives two v_{CO} bands in the infrared spectrum at 1892 cm⁻¹ and 1854 cm⁻¹ [A₂"+E'] characteristic of free D_{3h} Mn(CO)₅⁻ unperturbed by ion-pairing [3,4]. As a suspended solid in nujol the E' band is split into two (1856 cm⁻¹, 1839 cm⁻¹) presumably due to lowering of local symmetry by crystal packing effects.

Reactions of PPNMm(CO)₅ with alkyl, germyl and stannyl halides

Results of reactions of PPNMn(CO)₅ with PhCH₂Br, R₃SnCl and Me₃GeCl are compared in Table 1 with those obtained in similar reactions using NaMn(CO)₅. It is apparent that PPNMn(CO)₅ is reacting in the same manner as NaMn(CO)₅ (eqn. 1).

 $RX + M^{+} + Mn(CO)_{5}^{-}$ → RMn(CO)₅ + MX (1) $[M^{+} = Na^{+}$ or PPN⁺; RX = PhCH₂Br, Ph₃SnCl, Bu₃SnCl, Me₃GeCl] Thus PPNMn(CO)₅ is a suitable reagent in Et₂O or CH₂Cl₂ for salt elimination

reactions with carbon, germanium or tin halides. However it offers no real

228

advantages in routine syntheses over $NaMn(CO)_5$ which normally gives uncomplicated reactions with these Group IV halides. Nevertheless the ease of handling of PPNMn(CO)₅ simplifies the experimental procedure, especially if several similar derivatives are required, and the successful application in CH₂Cl₂ suggests PPNMn(CO)₅ is the reagent of choice if non-ether solvent systems are required.

<u>Halide</u>	Solvent	Product	<u>Yield</u>	<u>Literature</u> *
PhCh₂Br	Et₂0	PhCH₂Mn(CO)₅	74%	70% (ref 10)
Bn₃SnC1	Et₂0	Bu₃SnMn(CO)₅	80%	52% (ref 11)
PhCH₂Br	CH2C12	PhCH₂Mn(CO)₅	63%	-
Ph₃SnC1	CH2C12	Ph₃SnMn(CO)₅	60%	-
Me₃GeCl	CH ₂ Cl ₂	Me₃GeMn(CO)₅	-	-

Reactions of PPNMn(CO)₅ with C, Ge and Sn halides

 $^{\text{R}}_{\text{Reported yields in similar reactions using NaMn(CO)_{5}}$

Reactions of PPNMn(CO)₅ with silicon halides

Table 1

In contrast to the systems involving other Group IV halides, reaction of PPNMn(CO)₅ with Me₃SiCl, Me₃SiBr or Ph₃SiCl was unsatisfactory as a route to species with Si-Mn bonds. In each case a major manganese containing product was Mn(CO)₄X₂⁻ [X=Cl or Br] as the PPN⁺ salt. In an attempt to elucidate the mechanism of formation of this product the interaction of Me₃SiCl with PPNMn(CO)₅ was studied in detail. When the reagents were mixed together in CH₂Cl₂ a rapid reaction occurred and after 10 minutes infrared examination showed no Mn(CO)₅⁻ was present in solution, the major feature in the carbonyl stretching region being a broad band at 2010 cm⁻¹ arising from an, as yet, unidentified species. After an hour at room temperature a band at 1930 cm⁻¹ (from Mn(CO)₄Cl₂⁻) is reasonably intense and after 15 minutes to identify the initial product met with little success. Addition of hexane to remove ionic species led to varying amounts of PPNC1, PPNMn(CO)₄Cl₂ and PPNMn(CO)₅ being precipitated with small amounts of $Mn_1(CO)_{10}$, $Me_3SiMn(CO)_5$ (<2%) and $ClMn(CO)_5$ remaining in solution.

In an analogous manner Me_3SiBr and $PPNMn(CO)_5$ in CH_2Cl_2 gave $PPNMn(CO)_4Br_2$ as the main product. Similarly Ph_3SiCl gave $Mn(CO)_4Cl_2^-$ in a slower, less clean reaction and it is noteworthy (vide infra) that no $Mn_3(CO)_{14}^-$ was detected in the system at any stage.

Reaction between Me_3SiCl and $PPNMn(CO)_s$ in Et_2O is slow because of the heterogeneous nature of the system but again $Mn(CO)_4Cl_2^-$ was the major product after 24 hours at room temperature, with very little ether-soluble metal-carbonyl containing product.

Unusual reactions of metal-carbonyl anions with chlorosilanes are well documented [12,13,14]; indeed $Fe(CO)_2Cp^-$ is the only anion that consistently gives silyl derivatives under normal conditions [1,2,15]. Only in the absence of solvent [14] or with a non-polar solvent such as hexane [16] do coupling reactions between NaMn(CO)₅ and silicon chlorides occur successfully. In a detailed study of the reaction between NaMn(CO)₅ and Ph₃SiCl in THF Curtis [12] showed that Mn₃(CO)₁₄⁻⁻ was the major metal-containing product, with the formation of Ph₃SiOSiPh₃ accounting for the silicon group. A mechanism involving silicon attack at a coordinated carbonyl group was proposed, and similar explanations have accounted for products found in cobalt carbonyl systems [13]. In contrast, no Mn₃(CO)₁₄⁻⁻ was encountered in the reactions of PPNMn(CO)₅ with silicon halides in the present study, suggesting that the counter ion present has an important influence on the reaction pathway.

The route to formation of $Mn(CO)_{4}Cl_{2}^{-}$ remains unclear. A possible intermediate is $Me_{3}SiMn(CO)_{5}$ since it was shown independently to react with PPNCl to give $Mn(CO)_{4}Cl_{2}^{-}$ as a major product. (In contrast, soluble halides lead to a reversible dissociation of the Sn-Mn bond in $Ph_{3}SnMn(CO)_{5}$ [17].) However infrared evidence suggests that $Me_{3}SiMn(CO)_{5}$ is not the rapidly formed initial product. Similarly no appreciable amounts of $ClMn(CO)_{5}$ were detected at any stage, although this too reacts with PPNCl to give $Mn(CO)_{4}Cl_{2}^{-}$ under mild conditions. Although the details remain unresolved it can be concluded that $PPNMn(CO)_{s}$ is no more useful than $NaMn(CO)_{s}$ in the preparation of silicon-manganese bonds. This suggests that ion-pairing effects are not responsible for the anomalous reactions previously observed.

EXPERIMENTAL

General

All reactions were carried out under oxygen free nitrogen using standard techniques. THF and Et₂O were distilled from sodium benzophenone ketyl immediately before use. Infrared spectra were recorded on a Perkin-Elmer Model 180 spectrometer. $Mn_2(CO)_{10}$, Me_3SiCl , Ph_3SiCl , Ph_3SnCl and Bu_3SnCl were obtained commercially. PPNC1 [6], PPNBr [6], Me_3SiBr [18], $Me_3SiMn(CO)_5$ [14], $ClMn(CO)_5$ [19] and $BrMn(CO)_5$ [19] were prepared using methods available in the literature.

Preparation of PPNMn(CO)5

This was carried out using the method of Ruff and Schlientz [6]. $Mn_2(CO)_{10}$ (2.0g, 5.1 mmol) in THF (25 cm³) was stirred for 90 minutes with excess 1% sodium amalgam. A solution of PPNCl (5g, 8.7 mmol) in CH₂Cl₂ (25 cm³) was added and after 15 minutes precipitated NaCl was filtered off using a glass sinter. The filtrate was evaporated to dryness under vacuum leaving a yellow residue which was recrystallised from CH_2Cl_2/Et_2O to give PPNMn(CO)₅ (5.5g, 75%) as pale yellow crystals.

Reaction of PPNMn(CO)₅ with PhCH₂Br

A solution of PPNMn(CO)₅ (0.7g, 0.95 mmol) in CH_2Cl_2 (10 cm³) was treated with PhCH₂Br (0.29g, 1.7 mmol) and the mixture was stirred for 12 hours. Hexane (10 cm³) was added to precipitate PPNBr. The filtrate was evaporated to dryness and the residue sublimed (30°C/0.1 mm) on to a cold finger to give PhCH₂Mn(CO)₅ (0.18g, 63%) [10]. A similar reaction in Et₂O gave PhCH₂Mn(CO)₅ in 74% yield.

Reaction of PPNMn(CO)₅ with Ph₃SnCl

 $PPNMn(CO)_5$ (0.45g, 0.6 mmol) and $Ph_3SnC!$ (0.5g, 0.6 mmol) were stirred

together in CH_2Cl_2 (10 cm³) for an hour. After the addition of hexane (20 cm³) the mixture was filtered and solvents were evaporated to give $Ph_3SnMn(CO)_5$ (0.19g, 60%) [20].

Similar reactions of PPNMn(CO)₅ with Bu_3SnC1 (in Et_2O) or Me_3GeC1 (in CH_2Cl_2) gave $Bu_3SnMn(CO)_5$ (80%) [11] or $Me_3GeMn(CO)_5$ [21].

Reaction of PPNMn(CO)₅ with Me₃SiCl

A] PPNMn(CO)₅ (0.7g, 0.95 mmol) and Me₃SiCl (0.17g, 1.5 mmol) were stirred for 12 hours in Et₂O (50 cm³). The solid present was filtered off, and after recrystallisation from $CH_2Cl_2/Et_2O/hexane$ was shown to be PPNMn(CO)₄Cl₂ by comparison with an authentic sample. The original filtrate was evaporated to dryness to leave a small residue containing Mn₂(CO)₁₀ and ClMn(CO)₅ (by i.r.).

B] PPNMn(CO)₅ (0.72g, 1 mmol) was dissolved in CH_2Cl_2 (10 cm³) and to this was added Me₃SiCl (0.17g, 1.5 mmol). After 10 minutes an infrared spectrum showed a strong band at 2010 cm⁻¹ with weaker peaks at 2120 cm⁻¹, 2053 cm⁻¹ and 1930 cm⁻¹ and complete absence of absorptions at 1892 cm⁻¹ and 1854 cm⁻¹ from Mn(CO)₅⁻. After an hour the peak at 1931 cm⁻¹ began to dominate the spectrum. Removal of solvent after 24 hours left a residue which was recrystallised from CH_2Cl_2/Et_2O to give PPNMn(CO)₄Cl₂ (0.25g).

C] The reaction in B was repeated except that hexane (20 cm³) was added after 15 minutes to precipitate ionic products. The yellow precipitate formed was found (by i.r.) to be a mixture of PPNMn(CO)₅, PPNMn(CO)₄Cl₂ and PPNC1. The filtrate was evaporated to dryness and sublimation of the residue gave Me₃SiMn(CO)₅ (0.005g, 2%).

D] The reaction in B was repeated except that solvent was removed in vacuum after 15 minutes. The residue was a mixture of PPNMn(CO)₅ and PPNMn(CO)₄Cl₂, with no Me₃SiMn(CO)₅ being detectable.

Reaction of PPNCl with Me₃SiMn(CO)₅

A mixture of PPNC1 (0.55g, 1 mmol) and $Me_3SiMn(CO)_5$ (0.12g, 0.5 mmol) in Et₂O (15 cm³) was stirred at room temperature for 24 hours. The solid present was identified as PPNMn(CO)₄Cl₂ and infrared examination of the \cdot supernatant showed that no Me₃SiMn(CO)₅ remained.

Preparation of PPNMn(CO)₄Cl₂

This was prepared by a modification of literature methods [22,23]. Mn(CO)₅Cl (0.2g, 0.85 mmol) and PPNCl (0.44g, 0.8 mmol) were dissolved in 1,1,2,2-tetrachloroethane and the mixture heated to 50°C for 3 hours. Petroleum ether (150 cm³) was added to precipitate the product which was recrystallised from dichloromethane/petroleum ether to give creamy-white crystals of PPNMn(CO)₄Cl₂ (0.34g, 56%) v_{CO} (CH₂Cl₂) 2088(w), 2023(s), 1982(w), 1931(s) cm⁻¹.

Similarly PPNBr and BrMn(CO)₅ in tetrachloroethane at 60°C for 4 hours gave, after work-up as described above, PPNMn(CO)₄Br₂ in 80% yield as orange crystals v_{cO} (CH₂Cl₂) 2087(w), 2011(s), 1980(m), 1931(s) cm⁻¹

ACKNOWLEDGEMENTS

We wish to thank the New Zealand Universities Grants Committee for financial support, Dr. J. Simpson for helpful comments and Miss J. Mathis for a gift of Me₃SiBr.

REFERENCES

- R.B. King, Adv. Organometal. Chem., <u>2</u> (1964) 157; Accounts Chem. Res., <u>3</u> (1970) 417.
- 2. J.E. Ellis, J. Organometal. Chem., 86 (1975) 1.
- 3. C.B. Pribula and T.L. Brown, J. Organometal. Chem., 71 (1974) 415.
- M.Y. Darensbourg, D.J. Darensbourg, D. Burns and D.A. Drew, J. Amer. Chem. Soc., <u>98</u> (1976) 3127.
- J.P. Collman, J.N. Cawse and J.I. Brauman, J. Amer. Chem. Soc. <u>94</u> (1972) 5905.
- J.K. Ruff and W.J. Schlientz, *Inorganic Synthesis* <u>15</u> (1974) 84 and refs therein.

- R.D. Wilson and R. Bau, J. Amer. Chem. Soc., <u>96</u> (1974) 7601 and refs therein.
- M.Y. Darensbourg, H. Barros and L. Borman, J. Amer. Chem. Soc., <u>99</u> (1977) 1647.
- 9. P.J. Frazer, W.R. Roper and F.G.A. Stone, J.C.S. Dalton, 7 (1974) 760.
- 10. C.U. Pittman and R.F. Felis, J. Organometal. Chem., <u>72</u> (1974) 389.
- 11. S. Onaka and H. Sano, Bull. Chem. Soc. Japan <u>48</u> (1975) 258.
- D. Curtis, Inorg. Chem., <u>11</u> (1972) 802; Inorg. Nucl. Chem. Letters <u>6</u> (1970) 859.
- 13. B.K. Nicholson and J. Simpson, J. Organometal. Chem., In press (1978).
- 14. A.D. Berry and A.G. MacDiarmid, Inorg. Nucl. Chem. Letters, 5 (1969) 601.
- B.K. Nicholson and J. Simpson, J. Organometal. Chem., <u>72</u> (1974) 211 and refs therein.
- 16. C.S. Cundy and M.F. Lappert, J.C.S. Dalton (1978) 427.
- 17. J.M. Burlitch, J. Amer. Chem. Soc., 91 (1969) 4563.
- 18. L. Birkofer and E. Kraemer, Chem. Ber., 100 (1967) 2776.
- 19. R.B. King, Organometallic Synthesis 1 (1965) 174.
- W. Jetz, P.B. Simons, J.A.J. Thomson and W.A.G. Graham, *Inorg. Chem.* <u>5</u>
 (1966) 2217.
- 21. H.C. Clark, J.D. Cotton and J.H. Tsai, Inorg. Chem. 5 (1966) 1582.
- 22. R.J. Angelici, Inorg. Chem. 8 (1964) 1099.
- 23. E.W. Abel and I.S. Butler, J. Chem. Soc. (1964) 434.